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Abstract 

Background Availability of single nucleotide polymorphism (SNP) genotyping arrays and progress in statistical 
analyses have allowed the identification of genomic regions and genes under selection in chicken. In this study, SNP 
data from the 600 K Affymetrix chicken array were used to detect signatures of selection in 23 local Italian chicken 
populations. The populations were categorized into four groups for comparative analysis based on live weight (heavy 
vs light) and geographical area (Northern vs Southern Italy). Putative signatures of selection were investigated by 
combining three extended haplotype homozygosity (EHH) statistical approaches to quantify excess of haplotype 
homozygosity within (iHS) and between (Rsb and XP-EHH) groups. Presence of runs of homozygosity (ROH) islands 
was also analysed for each group.

Results After editing, 541 animals and 313,508 SNPs were available for statistical analyses. In total, 15 candidate 
genomic regions that are potentially under selection were detected among the four groups: eight within a group 
by iHS and seven by combining the results of Rsb and XP-EHH, which revealed divergent selection between the 
groups. The largest overlap between genomic regions identified to be under selection by the three approaches was 
on chicken chromosome 8. Twenty‑one genomic regions were identified with the ROH approach but none of these 
overlapped with regions identified with the three EHH‑derived statistics. Some of the identified regions under selec‑
tion contained candidate genes with biological functions related to environmental stress, immune responses, and 
disease resistance, which indicate local adaptation of these chicken populations.

Conclusions Compared to commercial lines, local populations are predominantly reared as backyard chickens, and 
thus, may have developed stronger resistance to environmental challenges. Our results indicate that selection can 
play an important role in shaping signatures of selection in local chicken populations and can be a starting point to 
identify gene mutations that could have a useful role with respect to climate change.
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Background
When chicken were first domesticated and spread is still 
a matter of debate. The jungle fowl has been suggested as 
the first domesticated chicken, through multiple inde-
pendent events [1] that took place in a relatively short 
evolutionary time [2], although a recent study has raised 
questions about this assumption [3]. After domestica-
tion, natural and artificial selection led to different strains 
of chickens, which are clustered into breeds or popula-
tions based on their phenotypic characteristics and the 
environmental conditions in which they are reared. Sev-
eral chicken breeds have been strongly selected for meat 
or egg production, and since the twentieth century, this 
selection has led to commercial breeds or lines with 
high performances. However, other chicken breeds (e.g., 
local populations) have not been selected for production 
and for which natural selection and genetic drift are the 
major driving forces for shaping their pattern of genetic 
variation.

Selection is responsible for changes in specific genomic 
regions called “signatures of selection”, which have a role 
in traits related to e.g. morphology, production, immune-
response, and adaptation to different environments [4]. 
Investigating the presence of signatures of selection is 
important to better understand the evolutionary history 
of livestock populations and the genetic mechanisms that 
underlie phenotypic differentiation [5]. Moreover, signa-
tures of selection can be used to identify genes that exert 
an advantage for a particular population [6].

A previous study that used a massively paral-
lel sequencing approach discovered genomic regions 
and genes that may have been selected during chicken 
domestication and selective breeding [7]. However, this 
study included only a few breeds and the overall selec-
tion history for domesticated and wild chickens remains 
unclear.

Availability of single nucleotide polymorphism (SNP) 
genotyping arrays and progress in statistical analysis have 
allowed the identification of genomic regions and genes 
that have undergone positive selection in chicken [8–11]. 
Different approaches have been proposed for the identifi-
cation of signatures of selection, which include statistical 
methods that are based on linkage disequilibrium (LD), 
differences in allele frequency, homozygosity regions, 
and haplotype structure. As recombination does not (or 
seldom) occur during the rapid increase in the frequency 
of a haplotype that bears a beneficial mutation, an ongo-
ing or incomplete signature of selection contains a high-
frequency haplotype with broad LD. Relative extended 
haplotype homozygosity (EHH)-derived statistics [12] 
are the most efficient to identify higher-homozygosity 
regions with greater accuracy than single allele frequency 
approaches. Among these EHH-derived statistics, the 

most common are (i) the integrated haplotype score 
(iHS), which is a within-population test [13], (ii) the 
standardized log-ratio of the integrated site-specific EHH 
between pairs of populations test (Rsb) [14], and (iii) the 
cross-population EHH test (XP-EHH) [15]. Selection 
also leads to reduced genetic diversity in some regions 
of the genome, which results in stretches of consecu-
tive homozygous genotypes, known as runs of homozy-
gosity (ROH) islands. Previous studies have shown that 
ROH islands can be used to identify genomic regions that 
affect production or adaptation in livestock [16–18].

According to the FAO (DAD-IS), the conservation sta-
tus of several local Italian chicken breeds can be regarded 
as critical. Preliminary analyses on the genetic diversity 
and population structure of local Italian chicken popu-
lations have already been reported using genome-wide 
SNP data. The patterns of genetic differentiation showed 
that most of these populations formed non-overlapping 
clusters and were separated. In addition, some popula-
tions showed low effective population sizes and high 
levels of inbreeding, resulting in risk of extinction [19]. 
However, to date, no comparative genome-wide search 
for signatures of selection has been conducted in these 
chicken populations.

In the present study, genome-wide information from 
the 600  K Affymetrix chicken SNP array and iHS, Rsb, 
XP-EHH, and ROH approaches were used in compara-
tive analyses of local Italian chicken populations to detect 
signatures of selection and unravel the effect of selection 
and environmental pressure on these important local 
genetic resources.

Methods
Animal samples and quality control
All animals were genotyped using the Affymetrix Axiom 
600  K Chicken Genotyping Array (for full details see 
Cendron et  al. [19]). The data were edited using the 
PLINK 1.9 software [20] to remove SNPs with a call 
rate lower than 95%, SNPs with a minor allele frequency 
lower than 5%, and animals with more than 10% missing 
genotypes. To avoid multicollinearity effects, the geno-
type data were subjected to LD pruning using the PLINK 
1.9 software [20], with a SNP window size of 50, step of 5 
SNPs, and R2 of 0.60. After editing, genotypes on 541 ani-
mals from 23 local Italian chicken populations (Table 1) 
and for 313,508 SNPs remained.

Contrasting groups for comparative analyses
To identify genomic regions under selection, the breeds 
were categorized into contrasting groups for comparative 
analysis. The groups were formed according to the infor-
mation available for the populations included in the data-
set, including differences in live weight and geographical 
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area of origin (Table 1). Based on live weight, populations 
with an average live weight more than 3.5 kg were clas-
sified as heavy and the populations with an average live 
weight less than 1.5  kg were classified as light. For the 
classification based on geography, with Italy extending 
from the 47th parallel in the North to the 37th parallel 
in the South, the populations reared in regions above the 
45th parallel were classified as the Northern group and 
those below the 40th parallel as the Southern group. In 
addition, considering that all the populations included in 
this study are raised as backyard chickens, the 23 local 
Italian chicken populations were categorized as a meta-
population within a single fifth group defined as “local”.

Population structure
To investigate relationships within and between the four 
groups (heavy vs light and Northern vs Southern compar-
isons), multi-dimensional scaling (MDS) of the distance 
matrix was inferred using the adegenet R package [21]. 
Unsupervised hierarchical clustering was also carried out 
using the ADMIXTURE 1.23 software [22], for values of 

K from 3 to 5. The DISTRUCT program [23] was used to 
graphically display ancestry within each population.

Identification of signatures of selection
We performed pairwise comparisons of populations 
for (i) heavy vs light and (ii) Northern vs Southern Italy 
(Table 1) Based on using the rehh package [24] of the R 
software putative signatures of selection were investi-
gated using the Rsb and XP-EHH tests. A within-popu-
lation test (iHS) was also computed for each of the four 
groups, and for the local group. For the iHS test, infor-
mation on the ancestral and derived allele state is needed 
for each SNP because it is based on the ratio of the EHH 
associated with each allele. In our analysis, the ances-
tral allele was inferred as the most common allele within 
the 23 chicken populations. The iHS score for each SNP 
was transformed into two-sided p-value as: piHS =  −   lo
g10[1–2|Φ(iHS)−  0.5|], where Φ(iHS) is the cumulative 
Gaussian distribution function of iHS [24]. For the Rsb 
and XP-EHH tests, haplotypes were reconstructed from 
the genotyped SNPs using the fastPHASE 1.4 software 

Table 1 List of chicken breeds and number of animals (N) that composed the heavy/light and Northern/Southern groups

Breed Code N Population group

Heavy Light Northern Southern

Ancona ANC 24

Bianca di Saluzzo BSA 24 X

Bionda Piemontese BPT 22 X

Cornuta Caltanissetta COR 22 X

Ermellinata di Rovigo PER 23 X X

Livorno Bianca PLB 24

Livorno Nera PLN 24

Mericanel della Brianza MER 24 X X

Millefiori di Lonigo PML 23 X X

Modenese MOD 24 X

Mugellese MUG 24 X

Padovana Argenta PPA 24 X X

Padovana Camosciata PPC 24 X X

Padovana Dorata PPD 24 X X

Pepoi PPP 24 X X

Polverara Bianca PPB 24 X

Polverara Nera PPN 24 X

Robusta Lionata PRL 23 X X

Robusta Maculata PRM 24 X X

Romagnola ROM 24 X

Siciliana SIC 24 X X

Valdarnese VLD 24 X

Valplatani VLP 20 X

Total 541 141 192 307 66



Page 4 of 16Mastrangelo et al. Genetics Selection Evolution           (2023) 55:20 

[25]. We used the toolkit implemented in the imputeqc R 
package [26] to estimate the optimal number of haplotype 
clusters (K) needed for haplotype phasing. The Imputeqc 
package was designed to assess the imputation quality 
and/or to choose the model parameters for imputation. 
In our data, K = 30 provided the best imputation qual-
ity (for 5% of masked data) and was used in fastPHASE. 
Under the assumption that Rsb and XP-EHH values were 
normally distributed, a Z-test was applied to identify sig-
nificant SNPs under selection. Two-sided p-values were 
derived as pRsb =  −   log10[1–2|Φ(Rsb)−  0.5|] and pXP-
EHH =  −  log10[1–2|Φ(XP-EHH)-0.5|], where Φ (x) is the 
Gaussian cumulative distribution function.

To detect signatures of selection, the 250-kb sliding 
windows were used with 10-kb overlaps between con-
secutive adjacent window. For each of the three tests, a 
window was classified as putatively under selection when 
it contained at least three SNPs that exceeded the signifi-
cance threshold of −  log10(p-value) = 4.

Runs of homozygosity
Runs of homozygosity (ROH) were identified using the 
PLINK v1.9 software [20], applying a sliding-window 
approach to scan individual SNP genotypes and detect 
homozygous segments. The parameters applied to define 
a ROH were: (i) a sliding window of 50 SNPs across the 
genome; (ii) the proportion of homozygous overlap-
ping windows was set to 0.05; (iii) the minimum number 
of consecutive SNPs included in a ROH was set to 100; 
(iv) the minimum length of an ROH was set to 1 Mb; (v) 
the maximum gap between consecutive homozygous 
SNPs was set to 1000  kb; (vi) a density of one SNP per 
100  kb was set; and (vii) a maximum of two SNPs with 
missing genotype and up to one heterozygous genotype 
were allowed in a ROH. Common ROH among popula-
tions within each group were identified by counting the 
number of times the SNP was detected in those ROH, 
and dividing this value by the number of animals in each 
group, obtaining a locus homozygosity range. To identify 
ROH islands, the top 0.999 SNPs of the percentile dis-
tribution of the locus homozygosity range were selected 
and adjacent SNPs that met this threshold were merged 
into ROH islands.

Distance‑based permutational multivariate analysis 
of molecular variance
An analysis of molecular variance (AMOVA) was con-
ducted to partition the between-sample genetic-dis-
tance matrix into variation due to live weight category 
(heavy/light) and due to geographical area (Northern/
Southern Italy). Specifically, a permutational approach 
based on a distance matrix was followed to perform the 
AMOVA and test for statistical significance [27, 28], 

using the R implementation in the vegan package [29]. 
Based on the SNP genotypes, Hamming distances [30] 
between samples were calculated. The resulting D dis-
tance matrix was then partitioned as in the following 
models: (i)  D(n,n)  ~   BW(n), (ii)  D(n,n)  ~   GEO(n), and (iii) 
 D(n,n)  ~   BW(n) +  GEO(n), where BW and GEO are the 
chickens’ live body weight and geographical location, 
respectively, and n is the sample size. The significance of 
between-group differences (heavy vs light chickens, and 
Northern vs Southern Italy chickens) was determined 
based on 1000 permutations of the data by shuffling each 
population’s labels of heavy/light and Northern/Southern 
Italy.

Gene identification and functional enrichment analysis
Genomic coordinates for all identified signatures of 
selection were interrogated for genes that are annotated 
in the Gallus_gallus-5.0 genome assembly. Separate lists 
were created for (i) genes that overlapped with the signa-
tures of selection identified by both the Rsb and XP-EHH 
tests in both comparisons (i.e., heavy vs light, and North-
ern vs Southern Italy); and (ii) genes that overlapped with 
the signatures of selection identified by iHS for all five 
groups (heavy, light, local, Northern and Southern Italy). 
Using the online Database for Annotation, Visualization 
and Integrated Discovery (DAVID) software version 6.8 
(https:// david. ncifc rf. gov/), the gene lists were examined 
for significant over-representation of genes with par-
ticular functional categories. The DAVID software uses 
thousands of annotation terms in several annotation cat-
egories, such as Gene Ontology (GO), Biological Process, 
GO Molecular Function, and InterPro Domains to exam-
ine gene lists for enriched processes and functions. An 
adjusted Benjamini-corrected p-value of 0.05 was used 
as the criterion for statistical significance of enrichment. 
In addition, to investigate the biological function of each 
annotated gene and the phenotypes that they are known 
to affect, a comprehensive literature search was con-
ducted, including information from other species.

Results
Population structure
Multi-dimensional scaling indicated close relation-
ships between the populations that originated from the 
same geographical area (see Additional file  1: Fig. S1a 
and Additional file  2: Fig. S2a). In both these figures, 
the genetic diversity can be described as a triangle with 
apexes corresponding to: (1) the Siciliana (SIC) breed, (2) 
populations belonging to the Padovana breeds (PPA, PPC 
and PPD) and (3) the Robusta breeds (PRM and PRL), 
as reported in Cendron et al. [19]. The results also sup-
ported the separation into the two geographic groups, 
i.e. Northern vs Southern Italy (see Additional file 2: Fig. 

https://david.ncifcrf.gov/
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S2a). Moreover, no single isolated population was iden-
tified and none of the populations in each of the four 
groups showed marked genetic variation. There are some 
overlaps between a few heavy and light populations (see 
Additional file 1: Fig. S1a) and among the Northern pop-
ulations (see Additional file  2: Fig. S2a), which indicate 
a close relationship and admixture for these breeds (see 
Additional file 1: Fig. S1b and Additional file 2: Fig. S2b). 
In fact, the first few ancestral components (K = 3–5) were 
related to geographic origin and highlight low admixture 
among the populations originating from the different 
regions. Moreover, shared ancestral components were 
identified between populations belonging to the same 
group.

Partitioning of the genetic variance among groups
Techniques such as multivariate AMOVA can be used 
to determine the partitioning of the genetic diversity 
across different hierarchical levels such as breeds, groups 
of breeds, or geographical regions [31]. First, we parti-
tioned the matrix of genetic distances by weight category 
(heavy/light), which explained 15.6% of the genetic vari-
ance and was significant (p-value < 0.001). Similar results 
were obtained when partitioning by geographical area 
(Northern/Southern Italy), which explained 14.4% of the 
genetic variance and was also significant (p-value < 0.001). 
The combined effect of weight and geographical area 
from the model  D(n,n) ~  BW(n) +  GEO(n) resulted in simi-
lar variance components as obtained from the unifacto-
rial models (weight: 24%; geographical area: 16.5%), and 
both were still significant (p-value < 0.001 in both cases). 
These results suggest that the weight and geographical 
area groupings were largely orthogonal, i.e., independent 
from each other. The experimental design did not allow 
testing of the interaction between weight and geographic 

area, which could have provided further insights into the 
relationship between them.

Identification of signatures of selection using iHS
Forty-two autosomal outlier SNPs showed strong evi-
dence of selection [−  log10(p-value) > 4] in all the groups 
except for the populations classified as light (see Manhat-
tan plots for each group in Figs.  1, 2, 3, and Additional 
file  3: Fig. S3). These outliers defined eight candidate 
genomic regions across seven chromosomes (GGA, Gal-
lus gallus chromosome) that were putatively under posi-
tive selection and distributed: four for the local group, 
two for the heavy group, and one for the Northern 
and one for the Southern Italy groups (Table  2). These 
genomic regions ranged from 460 kb (on GGA8 for the 
local group) to 550  kb (on GGA25 for the local group). 
In total, 65 genes and uncharacterized genes (LOC) were 
located in these eight regions (Table 2).

Identification of signatures of selection using Rsb 
and XP‑EHH
The Rsb test detected 73 and three SNPs that were puta-
tively under selection for the heavy vs light (Fig. 4a) and 
Northern vs Southern Italy comparisons (Fig. 5a), respec-
tively. These markers defined nine and one candidate 
regions for the comparisons between the heavy vs light 
and Northern vs Southern Italy groups, respectively (see 
Additional file  4: Table  S1).The XP-EHH test identified 
139 and four SNPs that were putatively under selection 
for the heavy vs light (Fig. 4b) and Northern vs Southern 
Italy comparisons (Fig. 5b), respectively, that defined nine 
and one candidate regions for these respective compari-
sons (see Additional file 5: Table S2).

Table 2 Putative signatures of selection identified in the iHS analysis within each of the Northern, Southern, heavy, and local 
population groups

Gallus gallus chromosome number, GGA 
a Genomic region that overlapped with the between population tests (Rsb and XP-EHH)

Group GGA Start (bp) End (bp) Length (kb) Genes

Northern 1 188,750,000 189,220,000 470 FZD4, PRSS23, ME, FAM181B, PRCP, RAB30, CCDC90B

Southern 1 24,540,000 25,050,000 510 CTTNBP2, CFTR, GASZ, WNT2, ST7, ST7-OT3_2, CAPZA2, MET

Heavy 2 10,000,000 10,490,000 490 DIP2C, LARP4B, GTPBP4, WDR37

18a 6,200,000 6,710,000 510 ANKFN1, NOG, C17orf67, DGKE, TRIM25, COIL, SCPEP1, RAB11FIP4, gga-mir-1561, gga-mir-
193a, gga-mir-365-2, UTP6, SUZ12, CRLF3, ATAD5

Local 4 4,870,000 5,360,000 490 FGF13, F9, MCF2, ATP11C, ARL13A, XKRX, NOX1, CSTF2, TRMT12, SYTL4, SRPX2, TSPAN6, TNMD, 
PCDH19

7 16,830,000 17,310,000 480 CHN1, gga-mir-1570, CHRNA1, WIPF1, GPR155, SCRN3, CIR1, SP9, SP3

8 15,270,000 15,730,000 460 ‑

25 660,000 1,210,000 550 UBQLN4, LAMTOR2, OTUD7B, MTMR11, SF3B, COPA, EDPE, S100A11
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Overlapping regions identified by the EHH‑derived 
statistics
Combining alternative approaches to detect signa-
tures of selection has been suggested as a strategy to 
increase the reliability of studies on signatures of selec-
tion. Seven genomic regions, ranging from 320  kb (on 
GGA10 in the comparison heavy vs light breeds) to 
1180  kb (on GGA2 in the comparison heavy vs light 
breeds), were identified by the between-population 
approaches (Rsb and XP-EHH; Table  3): six in the 
comparison heavy vs light and one in the compari-
son Northern vs Southern Italy. Two of these seven 
regions contained at least 30 SNPs above the signifi-
cance threshold, providing potentially decisive evi-
dence of selection, i.e. one on GGA2 (at position 
99,700,000–100,880,000  bp, 62 SNPs with −  log10 ≥ 4 
in the XP-EHH test) and one on GGA18 (at position 
6,130,000–6,670,000  bp, 30 SNPs with −  log10 ≥ 4 in 
the XP-EHH test). Both these regions were identified in 

the comparison heavy vs light breeds. Importantly, the 
strong candidate region on GGA18 overlapped with a 
significant window identified in the iHS within-popula-
tion test for the heavy group (Table 2). The seven can-
didate regions that were identified by at least two tests 
harboured 71 known genes (Table 3).

Identification of signatures of selection based on regions 
of homozygosity
Twenty-one genomic regions that frequently appeared in 
a ROH were identified among all groups and are listed in 
Table 4. These regions ranged from 8.63 kb (on GGA4 for 
the light group) to 2853.42 kb (on GGA1 for the Southern 
Italy group). There were no overlaps between the selected 
regions identified with the ROH approach and those 
detected with the three EHH-derived statistics. Within 
the ROH islands, we identified several known genes and 
some uncharacterized genes (LOC; Table 4).

Fig. 1 Manhattan plot of the genome‑wide iHS analysis for the heavy chicken populations. Horizontal dashed line marks the significance threshold 
applied to detect the outlier SNPs [–log10(p-value) = 4]
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Functional annotation enrichment analysis
To better understand the biological implications, enrich-
ment analyses were performed for the set of genes that 
overlapped with the signatures of selection identified by 
both the Rsb and XP-EHH tests in each of the two com-
parisons and, for the set of genes that overlapped with 
the candidate regions identified by the iHS test. The only 
significantly enriched annotation cluster (Benjamini-
corrected p-value < 0.05) was observed with the iHS test 
for the local populations and included processes and 
pathways related to intermediate filament (GO:0005882), 
structural constituent of cytoskeleton (GO:0005200), and 
keratin (IPR003461) (see Additional file 6: Table S3).

Discussion
To the best of our knowledge, this is the first genome-
wide scan study of putative signatures of selection in local 
Italian chicken populations. Several factors could have 

led to the identification of signatures of selection in these 
populations, such as body weight (heavy vs light) and the 
geographical area of origin (Northern vs Southern Italy) 
(Table 1). Most local Italian chickens are Mediterranean-
type breeds or populations that are known to produce 
eggs and meat for the rural family and/or niche products 
[32]. Some can be regarded as meat-type chicken breeds, 
including Valdarnese, Robusta Lionata, Robusta Macu-
lata, Millefiori di Lonigo, and Ermellinata di Rovigo [33], 
although their productive performance is lower than that 
of commercial broiler lines. These local breeds have been 
mainly raised as backyard chickens and are, thus, more 
resistant to diseases and viruses than commercial chick-
ens, for which selective breeding has reduced resistance 
to infectious diseases [34]. In fact, to adapt to these back-
yard conditions, selective sweeps might have occurred in 
genomic regions that are related to immune responses 
and disease sensitivity [35]. Effects of the geographi-
cal area of origin on genomic regions that have been 

Fig. 2 Manhattan plot of the genome‑wide iHS analysis for the Northern Italian chicken populations. Horizontal dashed line marks the significance 
threshold applied to detect the outlier SNPs [–log10(p-value) = 4]
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subjected to selection have also been reported in local 
Italian goats [36] and sheep [37]. Geographical location, 
coupled with smallholder farm practices, likely imposed 
multiple environmental stressors on the studied chicken 
populations that may have affected their fitness and led 
to their adaptation to these environments over time 
through changes in allele frequency of beneficial or det-
rimental alleles.

A number of factors can affect the identification of sig-
natures of selection, including genetic structure, popu-
lation size, bottlenecks, and migration [38]. Assuming 
that populations with a similar structure have undergone 
similar evolutionary processes [39], we used populations 
with a high degree of within-population genetic homo-
geneity and shared ancestry components to detect signa-
tures of selection [19], as was also confirmed by the MDS 
and Admixture results (see Additional file 1: Fig. S1 and 
Additional file 2: Fig. S2). We also categorized the popu-
lations into four groups for comparative analysis. In fact, 

including more populations in a group may identify a 
specific history of selection for each production purpose, 
instead of population-specific selection histories, which 
can facilitate the interpretation of the identified signa-
tures of selection [39, 40].

To identify signatures of selection, we used differ-
ent statistical methods based on the decay of haplotype 
homozygosity (iHS, Rsb, and XP-EHH) and based on 
regions of homozygosity (ROH). The combination of 
different approaches is an effective way to identify sig-
natures of selection [38] and, together with the use of 
high-density SNP panels, can boost the detection accu-
racy and avoid unknown biases [8, 41, 42]. Moreover, 
we used LD-based pruning because it can account for 
the effects of ascertainment bias on the identification 
of signatures of selection, producing results that are 
most comparable to those obtained from whole-genome 
sequence data and therefore it is recommended for prac-
tical use [43, 44].

Fig. 3 Manhattan plot of the genome‑wide iHS analysis for the Southern Italian chicken populations. Horizontal dashed line marks the significance 
threshold applied to detect the outlier SNPs [–log10(p-value) = 4]
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This study detected 15 genomic regions that were 
potentially under selection using the extended haplotype 
homozygosity (EHH)-derived statistics. Eight of these 
regions were detected within a single group (iHS) and 
seven were identified by combining the results of Rsb and 
XP-EHH, which revealed divergent selection between 
groups, thus providing good evidence that these signals 

are not artifacts. Twenty-one additional genomic regions 
were identified with the ROH approach.

There were no overlaps between the regions under 
selection that were identified with ROH and those 
detected with the three extended haplotype homozygo-
sity (EHH)-derived statistics. This may be because ROH 
can detect signatures of selection related to any trait, 

Fig. 4 Manhattan plots of the a Rsb and b XP-EHH tests in the comparison between heavy vs light chicken populations. Horizontal dashed lines 
mark the significance threshold applied to detect the outlier SNPs [–log10(p-value) = 4]
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while the heavy vs light or Northern vs Southern Italy 
comparisons are more likely to detect signals related 
to the investigated trait. Each of these statistics has its 
advantages and disadvantages and can capture a specific 
genomic region under selection [13–15]. This is not sur-
prising as there are differences in the statistics underlying 
each approach for detecting the signatures of different 

types of selection across different timescales [14]. Moreo-
ver, the genomic regions detected by ROH can also result 
from other evolutionary processes, such as inbreeding, 
bottlenecks, and genetic drift e.g., [16, 18, 45, 46]. There-
fore, considering ROH regions as signatures of selection 
should be viewed with caution.

Fig. 5 Manhattan plots of the a Rsb and b XP-EHH tests in the comparison between Northern vs Southern Italian chicken populations. Horizontal 
dashed lines mark the significance threshold applied to detect the outlier SNPs [–log10(p-value) = 4]
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Table 3 Overlapping genomic regions identified by the two between‑populations tests (Rsb and XP-EHH) between the Northern/
Southern and between the heavy/light population groups

Gallus gallus chromosome number, GGA 
a Genomic region that overlapped with the within group test (iHS)

Contrasting groups GGA Start (bp) End (bp) Length (kb) Genes

Northern vs Southern 4 4,870,000 5,200,000 330 FGF13, F9, MCF2, ATP11C, ARL13A, XKRX, NOX1, CSTF2, TRMT12

Heavy vs Light 2 85,920,000 86,410,000 490 CHMP5, FH, SDHA, CCDC127, SLC6A19, SLC6A18, TERT, CLPTM1L, LPCAT1, NDUFS6, 
IRX4

2 99,700,000 100,880,000 1180 LRRC30, LAMA1, ARHGAP28, AKAP7L, EPB41L3, ZBTB14, C18ORF42, DLGAP1L

10 11,050,000 11,370,000 320 PDE8A, SCARNA15, FSD2, WHDC1, HOMER2, FAM103A1, C10H15ORF40, BTBD1, 
TM6SF1, HDGFRP3, BNC1

10 12,070,000 12,550,000 480 TMC3, STARD5, IL16, C10H15ORF26, MESDC1, MESDC2, CEMIP, ABHD17C, ARNT2

18a 6,130,000 6,670,000 540 ANKFN1, NOG, C18H17ORF67, DGKE, TRIM25, COIL, SCPEP1, RAB11FIP4, MIR1561, 
MIR193A, MIR365-2, COPRS, UTP6, SUZ12

20 2,160,000 2,510,000 350 CHMP48, ZNF341, MIR6674, PXMP4, E2F1, NECAB3, CBFA2T2, SNTA1, TOX2

Table 4 Runs of homozygosity islands identified within the heavy, light, Northern, and Southern population groups

Chromosome number Gallus gallus (GGA), positions of the genomic regions (in base pairs, bp) and length are reported

Group GGA Start (bp) End (bp) Length (kb) Genes

Heavy 3 86,818,664 86,828,229 9.56 –

3 86,861,928 87,641,651 779.72 LOC107053130, LOC107053149, PRIM2, RAB23, BAG2, ZNF451, BEND6, DST, LOC107053131, 
COL21A1

3 87,692,868 87,767,683 74.81 BMP5

4 39,754,881 39,768,758 13.87 CENPU, PRIMPOL

Light 1 16,630,326 16,645,553 15.23 No genes

1 16,848,684 17,866,916 1018.32 FAM19A5, LOC107051638, LOC107051639

2 97,941,997 98,028,867 86.87 LOC107052691

2 98,444,389 98,584,269 139.88 LOC107052693, APCDD1, VAPA

4 46,119,218 46,127,846 8.63 AFF1, PTPN13

4 46,404,020 46,659,733 255.71 ARHGAP24, COPS4, LIN54, LOC107051735, THAP9, SEC31A

4 46,964,555 47,158,488 193.93 NKX6-1, CDS1

Northern 3 98,743,815 99,045,750 301.93 FAM84A

4 39,572,187 40,471,398 899.21 SNX25, KIAA1430, SLC25A4, LOC107051755, LOC769128, HELT, ACSL1, CENPU, PRIMPOL, CASP3, 
LOC107051754, IRF2, ENPP6, STOX2, TRAPPC11, RWDD4, LOC107051753, ING2, CDKN2AIP, 
LOC100858888, LOC100858925, WWC2, DCTD, LOC107051751, TENM3, LOC107051752

5 39,968,737 40,139,698 170.96 NRXN3, MIR1799, LOC107053526, LOC107053524

5 41,082,716 41,433,436 350.72 -

11 4,048,187 4,250,262 202.08 -

Southern 1 2,977,765 3,214,900 237.13 PODXL, MKLN1

1 3,258,785 6,094,202 2835.42 LOC107054126, LOC418249, LOC107054102, MIR29B1, MIR29A, K123, IL2RA, RBM17, PFKFB3, 
LOC107053972, PRKCQ, SFMBT2, LOC101752189, LOC101751191, LOC107054603, LOC419112, 
ITIH5, ITIH2, KIN, ATP5C1, TAF3, LOC107054553, GATA3, LOC107054641, LOC107054627, 
LOC107054620, LOC107054917, LOC100859811, MIR1626, LOC101747941, CELF2, MIR1596, 
USP6NL

1 148,678,584 149,784,495 1105.91 LOC107051465, SLITRK5, LOC101748664

3 45,812,852 47,048,955 1236.10 LOC107053025, FNDC1, SF3B5, STX11, TRNAL-UAA , LOC107053022, LOC107053024, 
LOC107053023, UTRN, MIR1734, LOC107053061, EPM2A, FBXO30, LOC101748225, SHPRH, 
GRM1, RAB32, ADGB

11 17,818,723 18,355,368 536.64 IRF8, LOC768665, COX4I1, EMC8, GINS2, GSE1, LOC107054326, LOC107054321, KIAA0513, 
LOC100857445, TRNAM-CAU , MAP1LC3B, ZCCHC14, JPH3, KLHDC4, SLC7A5, LOC107054327, 
CA5B, LOC107054328, BANP
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Numerous genomic studies of local chicken popula-
tions worldwide have allowed the identification of signa-
tures of selection in local breeds, using methods based 
either on an excess of haplotype homozygosity or defor-
mation of the allele frequency spectrum e.g., [8, 9, 11, 35, 
41]. One observation that has emerged from this study is 
that, in most cases, the signatures of selection detected 
in local chicken breeds do not overlap across studies and 
even between lines from the same geographical location 
within the same study e.g., [35]. This is mainly explained 
by the fact that, following their expansion through human 
migrations, founder populations of present-day local 
chicken breeds have experienced drastic bottlenecks [47]. 
In addition, being genetically isolated, these populations 
have independently evolved to adapt to diverse environ-
mental conditions. Given that standing genetic variation 
is the major contributor to adaptation in chicken [48], it 
is not surprising that most of the signatures of selection 
are breed-specific because of differences in genetic back-
ground between chicken breeds.

The putative genomic regions under selection identi-
fied in our study (Tables 2, 3 and 4) spanned many candi-
date genes with diverse molecular and cellular functions. 
Therefore, in our comparison with the literature, we con-
sidered mainly the genes in the identified regions that are 
related to traits involved in livestock breeding. Moreover, 
the number of identified regions potentially under selec-
tion was larger for regions related to differences in live 
weight than for those related to differences in geographi-
cal area of origin (Table 3).

Identification of signatures of selection using iHs
The iHS analysis was performed to detect recent and 
incomplete selective sweeps [13] within the five groups. 
This approach exploits information on allele frequencies 
of both selected and neighboring SNPs, which increases 
its power to detect signatures of selection [15]. This anal-
ysis is also more suited to genotyping data that are gen-
erated from SNP chips than to whole-genome sequence 
data, thus reducing the problems of ascertainment bias 
[49].

In the Northern breeds, the genes within the signature 
of selection on GGA1 were recently reported as puta-
tive positively selected genes related to cold adaptability 
in chickens [50]. In particular, the PRCP and FAM181B 
genes may participate in the adaptation to cold condi-
tions by regulating angiogenesis and nervous system 
development [51, 52]. These genes could have a role in 
the adaptation of the Northern breeds to the cold con-
ditions of their habitat region. Also, we identified the 
FZD4 as a candidate gene, which is associated with the 
pattern of phenotypic variation of plumage color (white, 

mixed and brown) in chicken. Plumage color is an impor-
tant qualitative trait that can serve as marker for breed 
identification and can be considered indirectly as an 
economically important trait that is under the influence 
of multiple genes, gene–gene interactions, and environ-
mental factors [53]. Several local Northern breeds show 
a white (Bianca di Saluzzo, Polverara Bianca, Ermellinata 
di Rovigo) or brown plumage color (Bionda Piemontese, 
Robusta Lionata, Padovana Camosciata). The detected 
genomic regions on GGA1 for the Southern populations 
included candidate genes involved in thermo-tolerance 
and local adaptation, as for example ST7, which may be 
involved in the differences in thermo-tolerance and heat 
stress response mechanisms in indigenous chickens [54].

The role of the WDR37 gene on GGA2 for the heavy 
group is also interesting as it encodes a member of the 
WD-repeat protein family that is involved in growth-
related processes, including cell cycle progression and 
gene regulation. A previous study [55] reported that 
WDR37 was differentially expressed between broil-
ers selected for fast and slow growth. This gene has also 
recently been reported as a candidate for body weight in 
Korean native chickens [56].

Finally, in the local group that includes all popula-
tions, signatures of selection were observed in genomic 
regions that included genes related to meat fatty acid 
composition in Korean native chicken (ATP11C) [57], 
and to immune traits in chicken (PCDH19) [58]. Within 
this region, the GPR155 gene is another candidate that 
is associated with high feed efficiency [59]. In a previ-
ous study [19], the identification of ROH islands within 
these local chickens considered as a meta-population, 
identified candidate genes involved in body weight and 
feed conversion ratio. However, there were no over-
laps between the regions under selection identified here 
with the haplotype homozygosity approaches and those 
detected based on ROH analysis. The two studies agreed 
only on the chromosomes (GGA7 and GGA8) that 
hosted the selective sweeps.

Identification of signatures of selection using Rsb 
and XP‑EHH
The Rsb and XP-EHH tests were applied to detect poten-
tial selective sweeps that were fixed (or nearly fixed) in 
one group but still segregated in the other groups. Cli-
mate and farming systems vary between chicken popula-
tions from Northern and Southern Italy and between the 
heavy and light groups. These aspects have an impact on 
genome shaping in terms of regions under selection and 
result in differences among populations and groups [19].

The genomic region on GGA4 that was identified 
in the comparison between Northern and Southern 
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Italian populations included nine candidate genes, such 
as NOX1, which plays an important role in the process of 
heat stress [60]. In fact, exposure of farm animals to high 
summer environmental temperatures, as for example in 
the south of Italy, negatively affects animal husbandry. 
Other candidate genes are involved in reproduction traits 
in livestock species, such as FGF13 in chicken [61] and 
MCF2 in cattle [62].

Among the candidate genes in the comparison between 
the heavy vs light breeds, several genes were identified on 
GGA2: SLC6A19, which is related to growth and metab-
olism in the Muscovy Duck [63]; EPB41L3, which has 
been reported as a promising gene for growth and meat 
production traits in sheep [64]; and ZBTB14, which is 
listed as a candidate gene for carcass and growth traits in 
chicken based on haplotype-based genome-wide associa-
tion studies [10].

The largest overlap between genomic regions show-
ing evidence of signatures of selection that was identified 
by the three approaches was located on GGA18 (iHS of 
heavy breeds, Table  2; Rsb and XP-EHH between heavy 
vs light breeds). Several genes belonging to the Noggin 
family were detected in this genomic region, such as the 
NOG gene, which has been suggested to be critical for 
normal bone and joint development [65]. Other inter-
esting genes were also mapped to this region, such as 
DGKE, a candidate gene involved in abdominal fat depo-
sition in chickens [66], SCPEP1, which has an important 
role in the regulation of the body and intramuscular fat 
content in pig [67], and RAB11FIP4, which is a candidate 
gene for body weight in American mink [68].

Identification of signatures of selection based on regions 
of homozygosity
In chicken, several studies have reported that ROH 
regions can harbour candidate genes associated with 
production traits, immune response, and environmental 
adaptation [41, 46, 69, 70]. For the group of heavy chick-
ens, several genes in three regions of GGA3 have been 
reported as candidates related to muscle growth and 
overlap with ROH islands detected in Italian autochtho-
nous turkey breeds [71]: BEND6, which was identified as 
a candidate gene for intramuscular fat content in chicken 
[72]; COL21A1, which is regulated by growth factors and 
is involved in muscle growth [73]; and BMP5, which is a 
strong candidate gene for body size in livestock [74]. In 
the group of light chickens, we identified the AFF1 gene 
within a ROH island on GGA4, which is known to have 
a lower expression level in mallards (wild ancestors with 
a low weight) than in Pekin ducks (large body size), and 
thus is related with body weight [75]. Within the ROH 
islands detected for the Northern group, we identified 
genes that are known to influence different phenotypic 

traits in chicken, but that are not directly linked with 
local adaptation, such as SNX25, a key gene in the regu-
lation of TGF-β signaling and therefore, contributes to 
the immune system [76], or ACSL1, a candidate gene for 
fat deposition in chickens [77]. Finally, for the group of 
Southern chickens, the detected ROH islands hosted sev-
eral interesting genes, such as: PFKBB3, which together 
with other genes belongs to the heat shock protein gene 
family, as a heat responsive gene [78]; genes related with 
pigmentation, a complex trait that is influenced by the 
genetic background and other factors, including the envi-
ronment and endocrine factors, e.g. the RAB32 gene, 
which has a crucial role in the pigmentation process, i.e. 
in the melanosome biogenesis, degradation, and trans-
port, and that acts in a functionally redundant way by 
regulating skin melanocyte pigmentation and controlling 
the post-Golgi trafficking of tyrosinase (TYR) and tyrosi-
nase-related protein 1 (TYRP1) [79]; and the IRF8 gene, 
which is a critical transcriptional regulator of the innate 
and adaptive immune system and has been shown to 
have a role in the hyperpigmentation and immune devel-
opment in chicken [80].

Conclusions
In this study, we detected several putative regions con-
taining signatures of selection and genes that differ 
between groups of chicken populations. These results are 
in line with the breeding histories of the different popula-
tions. Identification of shared signals by different meth-
ods can provide persuasive evidence about the effect of 
selection on these specific regions. Since the genes that 
exhibit signatures of selection are related to local adap-
tation, we can hypothesize that positive selection in Ital-
ian chicken populations may have been driven by the 
need to survive in a backyard environment. Although the 
candidate genes were identified using different statisti-
cal methods, they may include some false positives. With 
the development of additional genomic approaches and 
experimental technologies, additional genes are likely to 
be found.
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